The peaks in your scope image clearly show a phase shift, which is kind of logical if you take into account the fact that the main component in a switched mode supply is a coil.
If you look a little more carefully at your scope trace you'll see the coils reactance at work in the lower trace, the peak is where the FET in the supply is closed and is drawing real power, the purple trace past the peak and beyond the 0 crossing is inverted and drops slowly back to 0 before the next peak hits. If you use the controls on your scope to zoom in on the bottom trace by increasing the vertical sensitivity you'll get a much better idea of what I'm getting at here. You'll see '0' voltage and yet current is still flowing.
You can't correct for power factor by simply increasing the resolution and averaging. The base frequency of your oscilloscope does not enter into the discussion here, it could be 500 Hz for all I care and that would be enough.
Furthermore, the power factor of a switched mode supply changes as a function of the load applied and gets (much) worse if that load is also reactive or capacitive. Under some circumstances it is possible to draw negative power from the wall socket if you do a naive measurement, or you'll see wall socket power decrease as output current increases.
All this is possible because voltage and current are more or less out of phase with each other.
The kill-a-watt will work well with some reactive loads (such as CFLs) as long as they're of the ballast type.
A switched mode supply presents challenges that can't be met at the cost constraints of a consumer device like that.
Vampire power is a new term, I'm not familiar with it. Dead load (or simply the losses) is anything that does not end up in your consumer (the live load), I'm not sure if that is an accurate translation of the terms. It normally goes up as a function of the amount of power consumed, the base line (consumption without any load at all) is probably your 'vampire power'.
Total efficiency is 100 * ((output power)/(input power)) and will in practice be anywhere from 60% to 98% depending on how well load and supply are matched, and can vary wildly from one powersupply to another due to component variations.
Finally, classical power factor correction applies to sinusoidal wave forms, as you've already discovered switched mode supplies waveforms on both the input and the output side are anything but sinusoidal further complicating an already hairy problem.
If you look a little more carefully at your scope trace you'll see the coils reactance at work in the lower trace, the peak is where the FET in the supply is closed and is drawing real power, the purple trace past the peak and beyond the 0 crossing is inverted and drops slowly back to 0 before the next peak hits. If you use the controls on your scope to zoom in on the bottom trace by increasing the vertical sensitivity you'll get a much better idea of what I'm getting at here. You'll see '0' voltage and yet current is still flowing.
You can't correct for power factor by simply increasing the resolution and averaging. The base frequency of your oscilloscope does not enter into the discussion here, it could be 500 Hz for all I care and that would be enough.
Furthermore, the power factor of a switched mode supply changes as a function of the load applied and gets (much) worse if that load is also reactive or capacitive. Under some circumstances it is possible to draw negative power from the wall socket if you do a naive measurement, or you'll see wall socket power decrease as output current increases.
All this is possible because voltage and current are more or less out of phase with each other.
The kill-a-watt will work well with some reactive loads (such as CFLs) as long as they're of the ballast type.
A switched mode supply presents challenges that can't be met at the cost constraints of a consumer device like that.
Vampire power is a new term, I'm not familiar with it. Dead load (or simply the losses) is anything that does not end up in your consumer (the live load), I'm not sure if that is an accurate translation of the terms. It normally goes up as a function of the amount of power consumed, the base line (consumption without any load at all) is probably your 'vampire power'.
Total efficiency is 100 * ((output power)/(input power)) and will in practice be anywhere from 60% to 98% depending on how well load and supply are matched, and can vary wildly from one powersupply to another due to component variations.
Finally, classical power factor correction applies to sinusoidal wave forms, as you've already discovered switched mode supplies waveforms on both the input and the output side are anything but sinusoidal further complicating an already hairy problem.